Forecasting PM10 Concentrations in the Caribbean Area Using Machine Learning Models

نویسندگان

چکیده

In the Caribbean basin, particulate matter lower or equal to 10 ?m in diameter (PM10) has a huge impact on human mortality and morbidity due African dust. For first time this geographical area, theoretical framework of artificial intelligence is applied forecast PM10 concentrations. The aim study concentrations using six machine learning (ML) models: support vector regression (SVR), k-nearest neighbor (kNN), random forest (RFR), gradient boosting (GBR), Tweedie (TR), Bayesian ridge (BRR). Overall, with MBEmax = ?2.8139, results showed that all models tend slightly underestimate empirical data. GBR model gives best performance (r 0.7831, R2 0.6132, MAE 6.8479, RMSE 10.4400, IOA 0.7368). By comparing our other ML studies megacities, we found similar only three input variables, whereas previous use many variables Artificial Neural Network (ANN) models. All these features area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

forecasting extreme pm10 concentrations using artificial neural networks

life style and life expectancy of inhabitants have been affected by the increase of particulate matter 10 micrometers or less in diameter (pm10) in cities and this is why maximum pm10 concentrations have received extensive attention. an early notice system for pm10 concentrations necessitates an accurate forecasting of the pollutant. in the current study an artificial neural network was used t...

متن کامل

Time Series Forecasting of Hourly PM10 Using Localized Linear Models

The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration values. The advantages of the proposed approach lies in the clustering of the data based on a common property and the utilization of the target variable during this process, which enables the development of more coherent models. Two alternative localized linear modelling approa...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmosphere

سال: 2023

ISSN: ['2073-4433']

DOI: https://doi.org/10.3390/atmos14010134